An orthotopic model of serous ovarian cancer in immunocompetent mice for in vivo tumor imaging and monitoring of tumor immune responses.
نویسندگان
چکیده
BACKGROUND Ovarian cancer is generally diagnosed at an advanced stage where the case/fatality ratio is high and thus remains the most lethal of all gynecologic malignancies among US women. Serous tumors are the most widespread forms of ovarian cancer and the Tg-MISIIR-TAg transgenic represents the only mouse model that spontaneously develops this type of tumors. Tg-MISIIR-TAg mice express SV40 transforming region under control of the Mullerian Inhibitory Substance type II Receptor (MISIIR) gene promoter. Additional transgenic lines have been identified that express the SV40 TAg transgene, but do not develop ovarian tumors. Non-tumor prone mice exhibit typical lifespan for C57Bl/6 mice and are fertile. These mice can be used as syngeneic allograft recipients for tumor cells isolated from Tg-MISIIR-TAg-DR26 mice. OBJECTIVE Although tumor imaging is possible, early detection of deep tumors is challenging in small living animals. To enable preclinical studies in an immunologically intact animal model for serous ovarian cancer, we describe a syngeneic mouse model for this type of ovarian cancer that permits in vivo imaging, studies of the tumor microenvironment and tumor immune responses. METHODS We first derived a TAg+ mouse cancer cell line (MOV1) from a spontaneous ovarian tumor harvested in a 26 week-old DR26 Tg-MISIIR-TAg female. Then, we stably transduced MOV1 cells with TurboFP635 Lentivirus mammalian vector that encodes Katushka, a far-red mutant of the red fluorescent protein from sea anemone Entacmaea quadricolor with excitation/emission maxima at 588/635 nm. We orthotopically implanted MOV1(Kat) in the ovary of non-tumor prone Tg-MISIIR-TAg female mice. Tumor progression was followed by in vivo optical imaging and tumor microenvironment was analyzed by immunohistochemistry. RESULTS Orthotopically implanted MOV1(Kat) cells developed serous ovarian tumors. MOV1(Kat) tumors could be visualized by in vivo imaging up to three weeks after implantation (fig. 1) and were infiltrated with leukocytes, as observed in human ovarian cancers (fig. 2). CONCLUSIONS We describe an orthotopic model of ovarian cancer suitable for in vivo imaging of early tumors due to the high pH-stability and photostability of Katushka in deep tissues. We propose the use of this novel syngeneic model of serous ovarian cancer for in vivo imaging studies and monitoring of tumor immune responses and immunotherapies.
منابع مشابه
99mTc-Glucarate for assessment of paclitaxel therapy in human ovarian cancer in mice
Objectives: The monitoring of cancer treatment response to chemotherapy is considered an essential strategy for follow-up of patients. The aim of this study was to evaluate the use of 99mTc-glucarate as a radiotracer for in vivo quantification and visualization of necrotic area and therapeutic effect of paclitaxel in ovarian cancer xenografted nude mice. Materials and Methods: After implantatio...
متن کاملEvaluation of a 99mTc-tricine Vascular Disrupting Agent as an In-vivo Imaging in 4T1 Mouse Breast Tumor Model
Colchicine as a vascular disrupting agent creates microtubule destabilization whichinduces vessel blockage and consequently cell death. Accordingly, colchicines and itsanalogues radiolabeled with 99mTc may have potential for visualization of tumor. In this work,deacetylcolchicine a colchicine analogue was labeled with 99mTc via tricine as a coligandand characterized for its tumor targeting prop...
متن کاملEvaluation of a 99mTc-tricine Vascular Disrupting Agent as an In-vivo Imaging in 4T1 Mouse Breast Tumor Model
Colchicine as a vascular disrupting agent creates microtubule destabilization whichinduces vessel blockage and consequently cell death. Accordingly, colchicines and itsanalogues radiolabeled with 99mTc may have potential for visualization of tumor. In this work,deacetylcolchicine a colchicine analogue was labeled with 99mTc via tricine as a coligandand characterized for its tumor targeting prop...
متن کاملListeria Monocytogenes Activated Dendritic Cell Based Vaccine for Prevention of Experimental Tumor in Mice
Background: The use of dendritic cells (DCs) as a cellular adjuvant provides a promis-ing approach in immunotherapy of cancer. It has been demonstrated that Listeria mono-cytogenes activated DCs pulsed ex vivo with tumor antigens trigger a systemic Th1-biased specific immune response and a single dose of this vaccine will cause a consider-able anti tumor immunity. Objective: The present study w...
متن کاملDevelopment of a syngeneic mouse model of epithelial ovarian cancer
BACKGROUND Most cases of ovarian cancer are epithelial in origin and diagnosed at advanced stage when the cancer is widely disseminated in the peritoneal cavity. The objective of this study was to establish an immunocompetent syngeneic mouse model of disseminated epithelial ovarian cancer (EOC) to facilitate laboratory-based studies of ovarian tumor biology and preclinical therapeutic strategie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 45 شماره
صفحات -
تاریخ انتشار 2010